Rabu, 16 Januari 2013

Memori Internal

Memory Internal

Pengertian memori adalah suatu penamaan konsep yang bisa menyimpan data dan program. Sedangkan Memori internal, yang dimaksud adalah bahwa memori terpasang langsung pada motherboard.
Dengan demikian, pengertian memory internal sesungguhnya itu dapat berupa :

  • First-Level (L1) Cache
  • Second-Level (L2) Cache
  • Memory Module
Akan tetapi pengelompokan dari memory internal juga terbagi atas :
  • RAM (Random Access Memory) dan
  • ROM (Read Only Memory)

Penjelasan dari masing- masing pengertian diatas adalah sebagai berikut :
1. First Level (L1) Cache : Memory yang bernama L1 Cache ini adalah memori yang terletak paling dekat dengan prosessor (lebih spesifik lagi dekat dengan blok CU (Control Unit)). Penempatan Cache di prosessor dikembangkan sejak PC i486. Memori di tingkat ini memiliki kapasitas yang paling kecil (hanya 16 KB), tetapi memiliki kecepatan akses dalam hitungan nanodetik (sepermilyar detik). Data yang berada di memori ini adalah data yang paling penting dan paling sering diakses. Biasanya data di sini adalah data yang telah diatur melalui OS (Operating system) menjadi Prioritas Tertinggi (High Priority).
2. Second-Level (L2) Cache : Memori L2 Cache ini terletak di Motherboard (lebih spesifik lagi : modul COAST : Cache On a Stick. Bentuk khusus dari L2 yang mirip seperti Memory
Module yang dapat diganti-ganti tergantung motherboardnya). Akan tetapi ada juga yang terintegrasi langsung dengan MotherBoard, atau juga ada yang
terintegrasi dengan Processor Module. Di L2 Cache ini, kapasitasnya lebih besar dari pada L1 Cache. Ukurannya berkisar antara 256 KB-2 MB. Biasanya L2 Cache yang lebih besar diperlukan di MotherBoard untuk Server. Kecepatan akses sekitar 10 ns.
3. Memory Module : Memory Module ini memiliki kapasitas yang berkisar antara 4 MB-512 MB. Kecepatan aksesnya ada yang berbeda-beda. Ada yang berkecepatan 80 ns, 60 ns, 66 MHz (=15 ns), 100 MHz(=10ns), dan sekarang ini telah dikembangkan PC133mhZ(=7.5 ns).
Memori modul di kelompok kan menjadi 2,yaitu :
a)      Single In-Line Memory Module (SIMM)
b)      DIMM (Dual In-Line Memory Module)

1. Sistem Memory Komputer
Dilihat dari lokasi, memori dibedakan menjadi beberapa jenis, yaitu register, memori internal dan memori eksternal. Register berada di dalam chip prosesor, memori ini diakses langsung oleh prosesor dalam menjalankan operasinya. Register digunakan sebagai memori sementara dalam perhitungan maupun pengolahan data dalam prosesor.Memori internal adalah memori yang berada diluar chip prosesor namun mengaksesannya langsung oleh prosesor. Memori internal dibedakan menjadi memori utama dan cache memori.Memori eksternal dapat diakses oleh prosesor melalui piranti I/O.
Karakteristik lainnya adalah kapasitas. Kapasitas memori internal maupun eksternal biasanya dinyatakan dalam mentuk byte (1 byte = 8 bit) atau word. Panjang word umumnya 8, 16, 32 bit. Memori eksternal biasanya lebih besar kapasitasnya daripada memori internal, hal ini disebabkan karena teknologi dan sifat penggunaannya yang berbeda.
Karakteristik berikutnya adalah satuan tranfer. Bagi memori internal, satuan tranfer sama dengan jumlah saluran data yang masuk ke dan keluar dari modul memori. Jumlah saluran ini sering kali sama dengan panjang word, tapi dimungkinkan juga tdak sama. Tiga konsep yg berhubungan dg satuan transfer :
• Word, merupakan satuan “alami” organisasi memori. Ukuran word biasanya sama dengan jumlah bit yang digunakan untuk representasi bilangan dan panjang instruksi.
• Addressable units, pada sejumlah sistem, adressable units adalah word. Namun terdapat sistem dengan pengalamatan pada tingkatan byte. Pada semua kasus hubungan antara panjang A suatu alamat dan jumlah N adressable unit adalah 2A =N.
• Unit of tranfer, adalah jumlah bit yang dibaca atau dituliskan ke dalam memori pada suatu saat.
Perbedaan tajam yang terdapat pada sejumlah jenis memori adalah metode access-nya. Terdapat empat macam metode :
• Sequential access, memori diorganisasi menjadi unit – unit data yang disebut record.Akses harus dibuat dalam bentuk urutan linier yang spesifik. Informasi mengalamatan yang disimpan dipakai untuk memisahkan record – record dan untuk membantu proses pencarian.
• Direct access, sama sequential access terdapat shared read/write mechanism. Setiap blok dan record memiliki alamat unik berdasarkan lokasi fisiknya. Akses dilakukan langsung pada alamat memori.
• Random access, setiap lokasi memori dipilih secara random dan diakses serta dialamati secara langsung. Contohnya adalah memori utama.
• Associative access, merupakan jenis random akses yang memungkinkan pembandingan lokasi bit yang diinginkan untuk pencocokan.
Berdasarkan karakteristik unjuk kerja, memiliki tiga parameter utama pengukuran unjuk kerja,yaitu :
• Access time
• Memory cycle time
• Transfer rate

2.Memory Utama
Memori utama merupakan media penyimpanan dalam bentuk array
yang disusun word atau byte, kapasitas daya simpannya bisa jutaan susunan.
Setiap word atau byte mempunyai alamat tersendiri. Data yang disimpan pada
1. Random Access Memory ( RAM )
2. Read Only Memory ( ROM )
3. CMOS Memory
4. Virtual Memory

Memori utama ini bersifat volatile, artinya data yang disimpan bersifat
sementara dan dipertahankan oleh sumber-sumber listrik, apabila sumber listrik
dimatikan maka datanya akan hilang.Memori utama digunakan sebagai media penyimpanan data yang berkaitan dengan CPU atau perangkat I/O.
Fungsi dari Memori Utama
Address bus pertama kali mengontak computer yang disebut memori. Yang dapat di akses oleh CPU dalam melakukan salah satu dari proses membaca (read) atau menuliskan/menyimpan (write) ke memori tersebut. Memori ini diistilahkan juga sebagai Memori Utama. Memori dapat dibayangkan sebagai suatu ruang kerja bagi komputer dan memori juga menentukan terhadap ukuran dan jumlah program yang bias juga jumlah data yang bias diproses. Memori terkadang disebut sebagai primary storage, primary memory, main storage, main memory, internal memory. Memori berfungsi menyimpan sistim aplikasi, sistem pengendalian, dan data yang sedang beroperasi atau diolah. Semakin besar kapasitas memori akan meningkatkan kemapuan komputer tersebut. Memori diukur dengan KB atau MB. Random Access Memory (RAM), merupakan bagian memory yang bisa digunakan oleh para pemakai untuk menyimpan program dan data.

3.Cache Memory
Memori utama yang digunakan sistem computer pada awalnya dirasakan masih lambat kerjanya dibandingkan dengan kerja CPU, sehingga perlu dibuat sebuah memori yang dapat membantu kerja memori utama tersebut. Sebagai perbandingan waktu akses memori cache lebih cepat 5 sampai 10 kali dibandingkan memori utama.
Cache berisi salinan sebagian isi memori utama. Pada saat CPU membaca sebuah word memory, maka dilakukan pemeriksaan untuk mengetahui apakah word tersebut berada di cache. Jika word memori terdapat di cache, maka akan dikirimkan ke CPU yang dikenal sebagai proses HIT. Sedangkan bila tidak ada,maka blok memori utama yang terdiri dari sejumlah word tetap akan diletakan/dicopikan di cache yang dikenal sebagai proses MISS dan selanjutnya dikirimkan ke CPU.
Elemen-elemen rancangan cache
a.Ukuran Cache
Ukuran cache disesuaikan kebutuhannya dalam membantu kerja memori utama. Semakin besar ukuran cache, maka semakin besar jumlah gerbang (gate) yang terdapat pada pengalamatan cache, akibatnya adalah cache yang berukuran
besar cenderung lebih lambat dibanding dengan cache berukuran kecil.
b. Fungsi pemetaan (mapping)
Saluran cache lebih sedikit jumlah nya jika dibandingkan saluran blok memori utama sehingga perlu algoritma untuk pemetaan blok-blok memori ke dalam saluran cache dan juga alat untuk menentukan blok memori utama yang sedang memakai saluran cache. Pemilihan fungsi pemetaan seperti langsung, asosiatif dan asosiatif set akan menentukan bentuk organisasi cache.
c.Pemetaan Langsung
Teknik yang paling sederhana, yaitu memetakkan masing-masing blok memori utama hanya ke sebuah saluran cache saja.Fungsi pemetaan mudah diimplementasikan dengan menggunakan alamat. Cache diakses dengan menggunakan alamat memori utama dianggap terdiri tiga field yaitu tag, line, dan word. Kekurangannya yang utama adalah terdapat lokasi cache yang tetap bagi sembarang blok-blok yang diketahui..
d.Pemetaan Asosiatif
Mengatasi kekurangan pemetaan langsung dengan cara mengizinkan setiap blok memori utama untuk dimuatkan ke sembarang saluran cache. Dalam hal ini, cache control logic menginterpretasikan alamat memori hanya sebagai sebuah field tag dan field word. Field tag secara unik mengidentifikasi suatu blok memori utama. Untuk menentukan apakah suatu blok berada di dalam cache, maka cache control logic harus secara simultan memeriksa setiap tag saluran yang sesuai. Dengan pemetaan asosiatif, terdapat fleksibilitas penggantian blok ketika sebuah blok di baca ke dalam cache. Kekurangan pemetaan ini adalah kompleksitas rangkaian yang diperlukan untuk menguji tag seluruh saluran cache secara parallel.

4.Organisasi DRAM
Dynamic RAM
Secara internal, setiap sel yang menyimpan 1 bit data memiliki 1 buah Transistor dan 1 buah Kondensator. Kondensator ini yang menjaga tegangan agar tetap mengaliri transistor sehingga tetap dapat menyimpan data. Oleh karena penjagaan arus itu harus dilakukan setiap beberapa saat (yang disebut refreshing) maka proses ini memakan waktu yang lebih banyak daripada kinerja Static RAM.Seperti yang telah dikemukakan sebelumnya, modul memori berkembang beriring-iringan dengan perkembangan processor. Jenis DRAM ini juga mengalami perkembangan.

Perkembangan Jenis DRAM
A.Synchronous DRAM (SDRAM) adalah salah satu contohnya. Dalam SDRAM ini (yang biasanya dikenal sebagai SIMM SDRAM) hanyalah memperbaiki kecepatan akses data yang tersimpan. Dengan proses sinkronisasi kecepatan modul ini dengan Frekuensi Sistem Bus pada prosesor diharapkan dapat meningkatkan kinerjanya. Modul EDO RAM dapat bawa ke kecepatan tertingginya di FSB maksimum 75MHz, sedangkan SDRAM dapat dibawa ke kecepatan 100MHz pada system yang sama. SDRAM ini juga dikembangkan lebih jauh.

  • PC100 RAM SDRAM yang dikembangkan untuk sistem bus 100MHz
  • PC133 RAM SDRAM yang dikembangkan untuk sistem bus 133MHz SDRAM yang dikembangkan untuk kebutuhan server yang memiliki kinerja yang berat. Jenis SDRAM ini dapat mencari kerusakan data pada sel memori yang bersangkutan dan langsung dapat memperbaikinya. Akan tetapi, batasan dari SDRAM jenis ini adalah, sel data yang dapat diperbaiki hanya satu buah sel saja dalam satu waktu pemrosesan data.

B. Burst EDO RAM (BEDO RAM) adalah jenis EDO yang memiliki kemampuan Bursting. Kinerja yang telah digenjot bisa 100% lebih tinggi dari FPM, 33% dari EDO RAM. Semula dikembangkan untuk menggantikan SDRAM, tetapi karena prosesnya yang asinkron, dan hanya terbatas sampai 66MHz, praktis BEDO RAM ditinggalkan.
C. Serial Presence Detect (PSD) adalah perkembangan dari DIMM yang menyertakan sebuah chip EPROM yang dapat menyimpan informasi tentang modul ini. Chip kecil yang memiliki 8 pin ini bertindak sebagai SPD yang sedemikian rupa sehingga BIOS dapat membaca seluruh informasi yang tersimpan didalamnya dan dapat menyetarakan FSB dengan waktu kerja untuk performa CPU-RAM yang sempurna.

Tidak ada komentar:

Posting Komentar